

DVC – MATH 135 SYLLABUS

*“You can’t
direct the wind –
but you can adjust
the sails.”*

Course: Math 135, Sec. 2595 – *College Algebra*

Instructor: Mr. Narin

Term: Spring 2026, Feb 9 – May 20th

Time: MW 11:10 am – 1:35 pm

Office Hours: MW 1:35 pm – 2:30 pm

Class Websites: **MathWithSteve.com**

Email: **SteveNarin314@gmail.com**

DVC Math Lab Hours in the Math/Engineering Center

Monday – Thursday: 10:00am – 2:00pm &
3:00pm – 7:00pm

Friday: 10:00am – 2:00pm

Required

Text: ***From Logic to Limits – A Course in College Algebra***
Available at the DVC Book Center

Calculator: A simple scientific calculator will be perfect for this class – just look for the LOG button – TI recommended; it's about \$13 and will be allowed on every quiz and test. No graphing calculators (or anything that does algebra) are allowed.

We will also use a graphing program on the web called Desmos. There's nothing to install – it runs right in your browser.

Browser: It is strongly recommended that you use Google Chrome for your web browser. Our class website requires it, and I am pretty sure that the Khan Academy website no longer supports Internet Explorer.

Platforms:

We do not use Canvas – we use **www.MathWithSteve.com** [No username or password required]. Here you will find the Syllabus, the Schedule (which contains the Homework), the Grade Sheet, Online Practice, and various links.

Email: As a DVC college student, you are required to check your school (or personal email

account, if you give me one) **regularly** — that means at least a few times each day.

Grading Components

We will use a point system for this class. That way, the grade sheet can display your grade at any point in the semester. The points will be allocated in approximately the following way:

Quizzes: 44% Roughly 24 quizzes at 10 pts each

Tests: 56% Exactly 3 tests at 100 pts each

Homework

Homework will be assigned from our text and the Online Practice Program, or anything else I come across.

The problems I assign are designed to inform you as to what skills and concepts you are supposed to be gaining from this class. In other words, you need to do as much homework as you need to — whatever it takes to achieve the degree of success that you desire. This might mean you do just a few of each type of problem until you understand the concept well; it might mean you do most or all of the problems, or even more than all the problems. In short, it's up to you to discover the homework strategy that suits your personal learning style. Because of this policy, homework is *not* counted toward your grade.

Quizzes

A quiz will be given at the end of each class meeting, including the first day of class, (excluding the three test days). The quizzes cover

primarily the previous lecture, and quite likely previous quizzes. If a quiz does cover earlier material, it will be made clear in the **Homework** part of the **Schedule**. I will drop the three lowest quizzes, but none of the last three. Assume that there will be NO make-ups on quizzes.

Tests

There will be three major tests. The tests will contain some multiple-choice or T/F questions, but mostly, “show your work” questions (with partial credit possible).

Letter Grades

A – 90% and up
B – 80% to 89%
C – 70% to 79%
D – 60% to 69%
F – below 60%

Live as if you were to die tomorrow.

Learn as if you were to live forever.

Mahatma Gandhi

Academic Dishonesty

Click the following link: [Academic Integrity Policy](#)

That document should answer all your questions regarding this issue.

Please note that — if caught cheating — the consequences I impose will be as harsh as the DVC policy will allow.

Student Learning Outcomes and Course Content

From the DVC Catalog:

This course presents a study of functions and their graphs, including polynomial, rational, radical, exponential, absolute value, and logarithmic functions; systems of equations; theory of polynomial equations; analytic geometry. Other topics include inequalities, nonlinear systems, conic sections. CSU, UC (credit limits may apply to UC - see counselor)

Objectives/Student Learning Outcomes

Students will be able to:

- A. Analyze and investigate properties of functions.
- B. Synthesize results from the graphs and/or equations of functions.
- C. Apply transformations to the graphs of functions.
- D. Recognize the relationship between functions and their inverses graphically and algebraically.
- E. Solve and apply rational, linear, polynomial, radical, absolute value, exponential, and logarithmic equations and solve linear, nonlinear, and absolute value inequalities.
- F. Solve systems of equations and inequalities.
- G. Apply techniques for finding zeros of polynomials and roots of equations.
- H. Apply functions and other algebraic techniques to model real world science, technology, engineering and mathematics (STEM) applications.
- I. Analyze conics algebraically and graphically.
- J. Use formulas to find sums of finite and infinite series.

Content

- A. Functions including linear, polynomial, rational, radical, exponential, absolute value, logarithmic: definitions, evaluation, domain and range
- B. Inverses of functions
- C. Algebra of functions
- D. Graphs of functions including asymptotic behavior, intercepts, vertices
- E. Transformations of quadratic, absolute value, radical, rational, logarithmic, exponential functions
- F. Equations including rational, linear, polynomial, radical, exponential, absolute value, logarithmic
- G. Linear, nonlinear, and absolute value inequalities
- H. Systems of equations and inequalities I. Characterization of the zeros of polynomials
- I. Properties and applications of complex numbers
- J. Properties of conic sections
- K. Sequences and series

Learning Outcomes and Objectives

Course Objectives

CSLOs

Analyze and investigate properties of functions.

Synthesize results from the graphs and/or equations of functions.

Apply transformations to the graphs of functions.

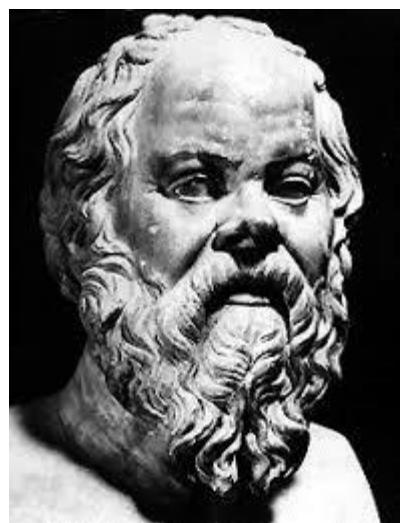
Recognize the relationship between functions and their inverses graphically and algebraically.

Solve and apply rational, linear, polynomial, radical, absolute value, exponential, and logarithmic equations and solve linear, nonlinear, and absolute value inequalities.

Solve linear and nonlinear systems of equations and inequalities.

Apply techniques for finding zeros of polynomials and roots of equations.

Apply functions and other algebraic techniques to model real world applications.


Course Outline

Course Content

1. Functions including linear, polynomial, rational, radical, exponential, absolute value, logarithmic: definitions, evaluation, domain and range
2. Inverses of functions
3. Algebra of functions
4. Graphs of functions including asymptotic behavior, intercepts, vertices
5. Transformations of quadratic, absolute value, radical, rational, logarithmic, exponential functions
6. Equations including rational, linear, polynomial, radical, exponential, absolute value, logarithmic
7. Linear, nonlinear, and absolute value inequalities
8. Systems of equations and inequalities
9. Characterization of the zeros of polynomials
10. Properties and applications of complex numbers

“Wisdom
begins
in wonder.”

Socrates

